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1 Introduction

Penelope is a system for formally verifying Ada programs. The formal spec-
ification of an Ada program is expressed in Penelope in a language called
Larch/Ada. This document explains the semantics of Larch/Ada. The goals
of this explanation are:

9 to provide guidance in interpreting Larch/Ada specifications so that
someone reading a specification can better determine exactly what the
specification says about the program

* to record the reasons for certain decisions which were made in the
course of designing Larch/Ada (many of which were based on seman-
tical considerations)

The major Laxch/Ada design decision was to use the Larch approach to pro-
gram specification, which is described in [7] and [11]. This approach separates
a specification language into two "tiers", one of which is used to describe
purely mathematical objects relevant to specification and the other of which
is used to specify the behavior of programs using these mathematical objects.
Section 2 gives a general description of the two-tiered approach. Sections 3
and 4 describe how the two-tiered approach is applied in Larch/Ada. Section
5 gives an introduction to the mathematical foundations of Larch/Ada. A
more detailed formal exposition can be found in [6].

Sections 6 and 7 are appendices. Section 6 describes some of the simplifying
assumptions which apply to verifications in Penelope. Section 7 describes how
various Ada types are modeled in Penelope using the two-tiered approach.

David Luckham's work with Anna [9] inspired the first version of Larch/Ada,
which was accordingly called Polyanna. We have retained many of his ideas.
The name has changed because our specification language has become, in the
terminology of Guttag, Horning, and Wing, a "Larch interface language." We
have borrowed liberally from their work in [7] and [10].



The reader of this manual should know some Ada and should be familiar with
formal verification of computer programs, at least at the level of the books by
David Gries [4] or Edsger Dijkstra [3]. That requires, in particular, modest
familiarity with ordinary first-order many-sorted logic. An acquaintance with
Anna [9], with the Larch approach to program specification f11], and with
Hoare's paper [8] on proving the correctness of data representations, would
also be helpful.

Throughout this manual a "specification" is a prescription of program be-
havior. This usage does not conform to the practice of the Ada Reference
Manual, which uses the word "specification" for what might, in more generic
terminology, be called the "header" or "signature" of a subprogram or pack-
age. When we wish to refer to such headers we will explicitly call them "Ada
specifications."

2 Two-Tiered Specifications

2.1 Verification

Penelope is based on the Floyd/Hoare or verification condition (VC) method
for verifying programs. In this method, a program is specifed by entry and
exit conditions. An entry condition is an assertion about the state in which
the program is called. An exit condition is an assertion about the state in
which the program terminates. The program is partially correct if all possible
executions of the program satisfy the following requirement: if the program
is invoked in a state in which the entry condition is true, and the program
terminates (normally or exceptionally), then the exit condition is true in the
state in which it terminates.

To verify a program using the VC method, the user first supplies a collection
of annotations. An annotation is an assertion about the state of the program
at some point of control internal to the program. In particular, the user sup-
plies annotations called loop invariants which state that a certain assertion
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about the program's state is true every time control reachs a certain point
inside a loop.

From an annotated program-that is, a program together with its specifica-
tion and user-supplied annotations-Penelope generates a set of formulas of
first-order logic, called the verification conditions (VCs) of that annotated
program. Under certain assumptions (described in Section 6), the program
is partially correct if all of the VCs are true. To verify the program, the user
proves the VCs using Penelope's proof editor.

Penelope allows the user to associate exit conditions with various different
kinds of termination, such as normal termination and termination with user-
defined exceptions. Penelope also allows the uber to associate annotations
with various different points internal to a program. These are described in
[2]. In this document we will be primarily concerned with the language for
making assertions about program states (the assertion language).

2.2 Assertion Language

Penelope's assertion language is based on first-order logic. Basing an as-
sertion language on first-order logic presents us with an immediate prob-
lem however. First-order logic languages were created to make statements
about mathematical objects and structures, but we want to use them to
make statements about computational objects. Computational objects be-
have diffE- ently from mathematical objects in several ways. For example,
if a first-order language contains a symbol for a function from integers to
integers, the semantics of first-order logic requires that the function be to-
tal, that is, defined on all integers. An Ada function which takes an integer
and returns an integer may not be total because it may not terminate on
all possible inputs. For example, integer addition on Ada will not be a total
function, since, on any machine, there will be pairs of integers which, when
added, cause an overflow.

One possible solution to this problem is to extend first-order logic so that
it can talk about computational objects. For example, we can introduce
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a special "undefined object" to model the possibility of non-termination,
and "error objects" to model the raising of exceptions. This was our initial
approach to specifications in Penelope, but it was abandoned when we found
that the logic for talking about computational objects would have to be very
complex. In particular, reasoning about the resulting verification conditions
tends to be quite difficult.

Instead, we adopt the Larch "two-tiered" approach to program specifica-
tion. The two-tiered approach separates each specification into two parts:
a mathematical component and an interface component. The mathematical
component describes a mathemati -al structure. and the interface component
uses this structure to express entry and exit conditions and annotations. The
link between the mathematical component and the interface component is
that the mathematical component describes operations and predicates on cer-
tain sets (such as the set of integers), and program objects, such as program
variables, take their values from these same sets.

2.3 An Example of Two-Tiered Specification

We will illustrate the two-tiered approach by an example. Consider a func-
tion

function factorial(x : integer) returns integer;

intended to compute the mathematical factorial function on non-negative
inputs. We will give a semi-formal specification of this function in the form
of a mathematical component and an interface component.

4



2.3.1 The mathematical component

Let fact be any totally defined mathematical function on the (infinite set of)
mathematical integers that satisfies the axiom:

fact(x) { if X =0
x* fact(x-1) if x>0

The mathematical component of our specification consists of the above axiom
on fact, together with all the usual arithmetical operations on the mathemat-
ical integers.

Note that our axiom says nothing about the values of fact on negative in-
tegers. Since fact is a total, mathematical function on the integers, fact(x)
must be some integer when x < 0, but our mathematical component does
not specify anything about such values.

2.3.2 The interface component

The following entry-exit condition, expressed in English, serves as the inter-
face component of our specification of factorial:

This function may not be invoked unless x > 0. If 0 < x and the
function returns a value, then it returns fact(x) as its value.

In an actual Larch/Ada specification, of course, English phrases like "This
function may not be invoked unless" and "If ... then it returns" would be
replaced by keywords of Larch/Ada. For example, the requirement that the
function only be invoked on nonnegative integers would be expressed by

IN z >= 0

which is Larch/Ada's syntax for specifying entry conditions.



Now let's consider how this specification illustrates the two-tiered approach.

The specification makes a formal separation between mathematical objects
and computational objects. The function fact is a mathematical entity, while
the denotation of factorial (in whatever programming language semantics
we might write down for our programming language) is a computational
object. The two are not the same; in fact, they belong to different worlds.

The connection between the two components arises from the fact that the
values that are passed to and returned by factorial are modeled by math-
ematical integers. The computational object represented by factorial is
not in the world of mathematical functions, but the value of the parameter
x which is passed to factorial and the value which is returned by facto-
rial (if it returns a value) are. It is therefore perfectly well-defined to talk
about whether the value of x passed to factorial is > 0 or not, because
this value is a mathematical integer. It is also well-defined to talk about
whether the value returned (if any) is equal to fact(x), because both of these
are mathematical integers.

We are able to specify factorial even though the mathematical component
does not provide an "undefined" object to represent the possibility that it fails
to terminate, and does not provide "error" objects to represent the possibility
that it may terminate by raising an exception. The interface component of
the specification uses the mathematical component to specify what must
happen when the function does terminate normally, and says nothing about
the other cases.

2.4 Abstraction and Reuse

An additional feature of two-tiered specification is that it supports use and
re-use of abstractions. For example, there is a useful "ideal" or "mathemati-
cal" notion of stack (unbounded, last-in-first-out) in terms of which it is easy
to describe many different actual stack implementations-implementations
which vary in size and in tWe behavior they exhibit under anomalous cir-
cumstances, such as attempts to push onto a full stack or to pco a empty
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one. Two-tiered specification provides a systematic way in which to isolate
such widely applicable idealizations, and apply them to the description of
particular cases.

Consider the example of factorial above. The same mathematical tier can
easily be used to specify a variety of other programs, such as:

e a function that raises the exception negative when the input is nega-
tive

* a function that raises the exception too-big when the input is positive
and the program does not terminate normally

e a function that returns as its value fact(x) + 1

9 a procedure that has a side effect on a global variable u, replacing the
value of u by fact(u)

Anyone who understands the meaning of the mathematical component im-
mediately understands the meanings of all these other specifications. No new
conceptual work is necessary. Any collection of lemmas, rewrite rules, etc.,
generated from the definitions of the mathematical component is available
for the proofs of any these programs.

3 Larch/Ada

In this Section we give some of the specifics of how the two-tiered approach
is applied in Larch/Ada.

Larch/Ada consists of constructs for both specifying the externally observ-
able, input-output behavior of a program, and for writing internal embedded
assertions and loop invariants. Adopting Anna's terminology, we call all such
constructs annotations. The word specification will continue to refer to ex-
ternal specifications-implementation-independent prescriptions of program
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behavior. The semantics of the assertion language is the same for both ex-
ternal specifications and internal embedded assertions.

3.1 The Larch Shared Language

The mathematical component of a Larch/Ada specification is a theory in

standard many-sorted first-order logic. That is, the user introduces specifi-

cation concepts like fact by providing a first-order theory that axiomatizes

their properties. The notation in which that theory is described is the Larch

Shared Language ([7]).

Such theories will not be intelligible unless they are presented in highly orga-

nized ways-indicating, for example, how "small" constituents are combined

into larger composite theories, or indicating the desired logical relations be-
tween theories.

The Larch Shared Language provides a notation, the trait construct, for

presenting first-order theories in ways that make their logical and conceptual

organization explicit. The denotation of a trait Tr is a first-order many-

sorted theory Th.

The user is permitted, but not encouraged, to write Tr in a completely un-

structured way: as a list of function signatures, followed by a list of axioms

about those functions. However, the Larch Shared Language permits the

user to construct Tr out of subexpressions indicating how its denotation Th
is assembled from other theories, and to make assertions about the relations

between them. For example, subexpressions of Tr may say any of the fol-
lowing things:

* The axioms of the theory Th include all the axioms of Th' (where Th'
is some other theory denoted by a trait).

o Th introduces no new assumptions about the basic arithmetical oper-
ations.
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* Any formula of Th containing occurrences of the symbol f can be
rewritten as a formula that does not contain f.

The Larch Shared Language is therefore a tool for helping the specifier to
construct a mathematical tier that that properly expresses his intentions,
and is intelligible to other users. For details we refer the reader to [7].

The Larch Shared Language is called "shared" because it is intended to be
the mathematical component for many different two-tiered specification lan-
guages (for different programming language for example). The difference be-
tween these specification languages will be their interface components, which
provide facilities for stating properties of programs in terms of the traits of
the mathematical component.

3.2 The Larch/Ada Interface Component

The interface component of a Larch/Ada specification has the following syn-
tactical form: Certain keywords, corresponding to phrases like "may not be
invoked unless," are followed by appropriate terms. Terms may denote values
(as in "fact(x)") or express constraints on program states (as in "x > 0").
Syntactically, terms are made up from the symbols introduced in the mathe-
matical tier, logical operators (including quantifiers), and identifiers (includ-
ing program variables and formal parameters) denoting Ada objects. We
discuss terms further in Section 4.

Terms have mathematical, not computational, meaning. That is why we do
not allow the identifier factorial to occur in terms, and why the logic of
terms is simple. Dynamic, computational behavior, such as the raising of an
exception, is indicated in an interface component by the appropriate keyword,
and the "logic" of such behavior is built into Penelope's VC generator.
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3.3 Relation to Anna

Both syntactically and conceptually Larch/Ada is a great deal like Anna [9].
Anna is a formal discipline for inserting comments (annotations) into Ada
programs. All the annotations of Larch/Ada have analogs in Anna. The
difference between analogous Anna and Larch/Ada constructs is semantic:
the Anna constructs analogous to Larch/Ada terms have a computational,
rather than mathematical, meaning.

A legal Ada program with comments satisfying the rules of Anna's syntax
is called an Anna program. The Ada program is called the Anna program's
underlying Ada text. An Anna program can be transformed into an Ada
program that runs the underlying text and, in passing, checks each state
to see that it satisfies the constraints expressed in its annotations. The
transformed program raises anna.error if it detects the occurrence of a state
violating these constraints. So long as execution of the transformed program
does not raise this exception, its effects (aside from a loss of efficiency) should
be identical with those of the underlying Ada text.

Anna can therefore be thought of as an extension of Ada with extra checking
constructs, which compiles into Ada, and whose semantics is defined in terms
of the execution semantics of Ada.

We abandoned our initial plan to formalize the logic of Anna because the
constructs of Anna are so thoroughly computational-making its underlying
logic rather complex. Indeed, if one takes the execution of the translated
Anna program as the definition of Anna's semantics, then there is no way to
formalize the logic of Anna apart from a formalization of the semantics of
Ada.

We remain indebted to Anna for much of our notation and terminology and
refer the reader to the Anna Reference Manual [91 for more information.
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4 Larch/Ada Terms and Ada Objects

This Section describes the syntax and semantics of Larch/Ada terms, and
the related notions of assertions and states. Syntactically, a term is a well-
formed sequence of symbols in our particular version of first-order logic. Se-
mantically, terms have mathematical, not computational, meaning. They
are distinct from Ada expressions, which are part of the imperative Ada lan-
guage. Terms denote values. In particular, every possible value of every Ada
object is denoted by some term.

In general, the value of a term depends on the state in which it is evaluated,
although the values of some terms (like "1 + 1") are independent of states.
The value of a term is never undefined or equal to some "undefined element."
This makes it possible to reason about terms in ordinary first-order logic.

An assertion is a term whose value is a boolean (true or false). An assertion
can be regarded as expressing a constraint on states. The constraint is met
if the value of the assertion is true in a given state, and is not met otherwise.

Via the "mathematical parts" of specifications, a user may introduce new
symbols and thereby expand the set of terms more or less at will. This
section deals only with the predefined vocabulary provided by Larch/Ada
for denoting the values of Ada objects and describing the basic operations
on them.

We will now describe the predefined terms of Larch/Ada. We will first illus-
trate the basic ideas for the case of type integer: how the values of integer
types and subtypes are modeled, how integer objects are modeled, and how
integer terms are evaluated. We will then describe the general approach for
all Ada types.
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4.1 Integer Types

The language of the mathematical tier contains sort symbols. A sort symbol
denotes a set of values, which is called the carrier of the sort symbol. The
carriers of the sort symbols of the mathematical tier are used to model the
values of Ada objects. In the case of the type integer, the mathematical tier
contains a sort symbol Int, whose carrier is the set of all the mathematical
integers. The values of all variables or formal parameters of type integer
are modeled as mathematical integers-i.e., as elements of the carrier of sort
Int. In Larch terminology, this is expressed by saying that the type integer
is based on the sort Int. Every Ada type mark is based on some (unique)
sort symbol.

We associate with integer not only the sort symbol Int, but also several
other sort symbols, and a collection of symbols for various functions. The
collection of all symbols (sort and function) associated with the type integer
will be denoted by Ei.t, and is referred to as a signature. We will describe

Eint further below.

Also associated with integer is a class of algebras for the signature Eint. We
will denote this class by .Ai. An algebra is an assignment of carriers to sort
symbols and functions to the function symbols. The reason we must associate
a class of algebras with type integer is that some of the predefined functions
are not completely specified. This is discussed further below. Also, as seen in
the factorial example, the user may introduce new function symbols which
are not fully specified. Any time a function symbol is not fully specified, there
will be a number of possible functions which can serve as its interpretation.
Each of these possibilities gives rise to a different algebra. We will give an
example of this below.

In each of the algebras in Ait, the sort symbol Int has the mathematical
integers as its carrier. We model the values of type integer as a subset of
the values of the carrier of nt in Aint.
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4.1.1 The Values of Type integer

Here is a brief, and partial, description of Ait.

Sorts The sorts of Aint are Int, Bool, AdaBool, AdaChar, and AdaString.
The carrier of Int in Aia the set of mathematical integers, and the carrier of
Bool is the set of boolean values. The sort AdaBool is the sort on which the
Ada type boolean is based. The technical reasons for distinguishing Bool and
AdaBool are discussed in section 7. The sorts AdaChar and AdaString are
those on which the Ada types character and string are based, respectively.
Discussion of their carriers is deferred to section 7.

The sorts AdaBool, AdaChar, AdaString, and the operations on them are
included because they are needed to describe the basic Ada operations of
type integer. In fact, rather than modeling integer in isolation, we must

model package standard as a whole. For present purposes we can usually
ignore the non-integer sorts and operations.

Operations Here we list a few of the symbols in Eint and discuss their
meanings (i.e., their interpretations in Aiat). So far as possible the opera-
tions are given mnemonic names, to indicate the role they play in defining
Ada types and operations. A full listing of Ein-t is provided in section 7.

Arithmetical operations Ait has a full complement of standard arith-
metical operations (including the decimal numerals), with their usual mean-
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ings. For example:
# + #: Int, Lnt-Int
# - # : Int, Int-dnt
# * # : Int, Int-*Int
#/# : Int, Int-*Int

etc.
0 : -. Ilnt
1 : -+Int
2 : -Int

etc.

The division operation is not normally provided in first-order formulations of
arithmetic, because of the awkwardness of dealing with terms like "1/0." The
way to think about terms like 1/0, 0/0, x/0, etc., in Larch/Ada is that they
denote well-defined, but totally unspecified, integers. Accordingly, 1/0 = 1/0
is true, because every integer is equal to itself. On the other hand, we may
not assume that 1/0 equals 2/0 or that 0/0 equals 1. This is the example
alluded to above of a predefined operation which is not fully specified. The
values of n/0 for various n are not specified. Each possible choice of values
for these terms gives rise to a different algebra in .,,t. In practice, we rarely
have to remember that we are dealing with a class of algebras rather than a
single algebra.

The fact that 1/0 has a value does not contradict the fact that Ada's division
operation raises numeric-error when it attempts to evaluate 1/0. Since we
insist that the values of Larch/Ada terms always be defined, we will be faced
with many instances, like 1/0, of "nonsensical" terms. As mentioned above,
these terms are taken care of consistently by the two-tiered approach. The
Larch/Ada term 1/0 is a mathematical integer whose value we don't specify.
It is completely separate from the Ada expression 1/0, which is not assigned
a mathematical value because it is a computational object. Instead, Penelope
contains rules about what happens when such an expression is evaluated.
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Scalar operations The algebras in Ai., also "inherit" a number of oper-
ations applicable to the values of any discrete type, for example:

pred : Int---Int
succ : Int--+Int

# <b # : Int, Int--Bool

# <. # : mt Int- AdaBool

# =b # : Int, Int-+Bool

#= # : Int, Int--+AdaBool
etc.

The value of succ(x) is x + 1, for every integer x, even though evaluation of
the analogous Ada operation integer'succ may raise an exception.

Because we distinguish the boolean sort Bool from the sort, AdaBool, on
which the type boolean is based, it is necessary to include two versions
of relational operators like < and =. We use <b, for example, to make
assertions like "x is less than y" and <, to denote the value returned by an
Ada expression like "x < y."

Values in Other Integer Types and Subtypes In Larch/Ada, al in-
teger types and subtypes are based on sort nt and therefore all take their
values in Aint(Int). It is clearly "right" that a type and its subtypes should
take values in the same domain. In Penelope we go further, and base all
the implementation-defined integer types on Int, and base any parent type
and its derived types on the same sort. Here are some consequences of that
decision.

After the declarations

type S is range 1..10;
type T is range 5..20;

x : S : 3;
y : T : 4;
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an Ada expression like x = y is illegal. On the other hand, the Larch/Ada
terms x =, y and x =b y are well-formed because, from the point of view
of Larch/Ada, x and y take their values in the same sort. In Ada, one can
compare x and y by means of explicit type conversion: x = S(y) is legal. In
Larch/Ada this type conversion is the identity function, so that evaluation of
x = S (y) corresponds, approximately, to evalution of the Larch/Ada term
X a y.

4.1.2 Larch/Ada Terms and their Evaluation

The notion of a Larch/Ada term is scoped, in the sense that each point in
an Ada text is associated with a set of legal Larch/Ada terms, and that set
varies from point to point. For the purposes of this discussion, we will make
two simplifications: we ignore the scoping, and we restrict attention to the
Ada texts whose only constants, variables, and formal parameters are of type
integer.

Larch/Ada Terms Here is a first approximation to the definition of "Larch/Ada
term": Treat each Ada identifier that is a program variable, formal param-
eter, or program constant of type integer as a logical constant of sort Int,
and then apply the usual syntactic constructions of first-order logic to these
logical constants and the symbols in Eirit.

For example, let x and y be program variables of type integer. Then,

* Some Larch/Ada terms of sort Int:

0 (5*4)/3 x y x+6 pred(x)

* Some Larch/Ada terms of sort AdaBool:

X<eY x= 3

9 Some Larch/Ada terms of sort Boo]:

x<bY Vz : Int(z = z) Vz : Int(z + y = y + z)
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(The definition given above is a simplification. We will give the complete
definition in sections 4.1.2 and 4.1.3).

Simple program variables and constants A simple variable, or simple
program variable, is an Ada program variable that is an identifier. Simi-
laxly, programming language constants that are identifiers are called simple

constants.

It is important to note that the only Ada names that may occur in Larch/Ada
terms are formal parameters, and those program variables or constants that
are identifiers. For example, after

type A is array(integer) of integer;
x : integer := 0;
A : array :-<others => 1>;

A i) is the name of a program variable, but is not a Laxch/Ada term, and
may not occur in one. Larch/Ada represents the value of such a variable by
means of a complex term: the result of applying a (mathematical) selection
operation to the two Larch/Ada terms A and x. Such terms axe discussed
further in section 7.

Evaluation of terms The value of a Larch/Ada term depends on the state
in which it is evaluated.

States A state is a function that associates certain Larch/Ada identifiers
with values. Among these identifiers are the simple program variables and
constants, and they are our present concern. A state always assigns an
actual value (not "undefined" or "error") to every such identifier. The value
associated with an uninitialized variable is discussed in section 4.1.3. Simple
integer variables and simple integer constants are mapped to integers-i.e.,
to elements of .Airt(Int).
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The other information represented in states, which will be discussed later,
includes: historical information (e.g., whether a variable has been initialized),
the values of implicit Ada objects (e.g., the heap associated with an access
type), and user-defined state information stored in "virtual objects."

Evaluations The value of a Larch/Ada term t in state s is calculated by
evaluating t in Ant, with the simple program variables and constants have
the values given to them by s. For example, if x has value 3 in state s, then
in state s th,. Larch/Ada term succ(x) has value Ai1 t(succ)(3)-that is, the
value 4. Because a state assigns a value to every simple program variable,
every Larch/Ada term also receives a value--and is never "undefined".

A Larch/Ada term ma- also refer to the initial value of a formal parameter.
For example, if x is a formal in parameter of a subprogram then in x is a
Larch/Ada term denoting the value of x when the subprogram was invoked.
Terms of this form are evaluated as follows: the evaluation of the term in x
in a state s is the evaluation of the term x in the state So, where so is the
initial state of the subprogram or function in question. This is discussed
further below.

4.1.3 Integer objects

Strictly speaking, Larch/Ada terms denote not Ada objects, but the values
that such objects may contain. One of the ways in which an object differs
from a value is that an object has a history. Therefore, in addition to terms
associated with the values of particular objects, Larch/Ada contains terms
associated with their histories.

A simple object is an object named by a simple variable or constant.

Formal parameters Formal parameters are not the names of true objects,
but are treated as objects in certain contexts. They will be so treated in this
discussion.
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Histories of Simple Objects Larch/Ada contains two built-in ways to
refer to the histories of simple integer objects.

Initialization According to Ada semantics, the result of the declaration

x : integer;

is that the object x exists but does not "have a value." An immediate attempt
to execute x ,= x; or to evaluate x = x would be an erroneous attempt to
read a variable that does not "have a value."

Larch/Ada represents these facts about the object x by pair of values:

* an integer, denoted by the Larch/Ada term (x: --+!nt);

If the variable has not been assigned to, we treat this value as not only
uninteresting, but unobservable (in the sense that an attempt to read
it is a catastrophic error).

9 a boolean, denoted by the Larch/Ada term (x'def ined : ---Bool).

This assertion (i.e., Boolean term) expresses exactly what the Ada
reference manual means by the phrase "x has a value."

In the state immediately after the declaration, (x : ---Int) is a "defined but
unspecified" integer value and (x'defined : -Int) has value false. In any
state after x has become iniialized, (x'defined : -Int) evaluates to true.

Notice that immediately after the declaration of x, the assertion x =6 x is
satisfied and the value of x =, x is that element of AdaBool corresponding
to the Ada object true. This is true despite the fact that an attempt to
evaluate the executable expression x = x in that state is a program error.

A Larch/Ada term x'defined is also associated with each formal integer
parameter x.
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"In" values To specify the effects of subprogram executions one must be
able to "remember" the values which the subprogram parameters and globals
have on entry. So, for example, if x is a simple integer variable global to a
procedure P, the fact that P has the side effect of incrementing x by 1 can be
specified as

out (x = (in x) + 1)

The keyword "out" says that the assertion that follows is an assertion about
the exit state of P. The leftmost occurrence of x denotes the value of x in the
exit state, and in x refers to the value of x on entry to P.

If x is a simple integer variable, then in certain contexts in x and (in
x) 'defined are Larch/Ada terms of sort Int. It is necessary to make (in x)
available for the formulation of subprogram specifications and convenient to
make it available for formulating assertions about details of a subprogram's
execution.

The full logical declarations of these Larch/Ada terms are:

(in x : --+Int)

((in x)'defined : -- Int)

Virtual Variables A virLual variable (sometimes called a "history vari-
able") does not denote a true object. It is a way for the user to direct Pene-
lope to "remember" values that were calculated in previous states during the
execution of a program. The term x' defined can be regarded as a virtual
variable declared and manipulated automatically, out of the user's control.
Notice that x'defined has a sort, but not a type. This is characteristic of
virtual variables.

Specification constructs representing "declarations of" and "assignments to"
virtual variables can be introduced into Ada texts in places where ordinary
Ada declarations and assignments might occur. For example,
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x : Int := 0; -- the '--: is a syntactic flag
-- Int is a sort symbol, not a typemark
-- 0 is a Larch/Ada term

while b loop
x := x+1; -- x+1 is a Larch/Ada term

end loop;

makes (x : ---Int) into a counter that, upon exit, has recorded the number of
iterations of the loop.

The semantics of virtual variables is analogous to, but not identical with,
that of Ada variables. Virtual declarations and assignments do not represent
executions, but can be modeled as modifications to the "virtual" part of the
state.

One notable difference between the values of actual and virtual variables
is that the value in every (actual) integer variable is constrained to lie be-
tween minint and maxint, whereas the value in a virtual integer value is
unconstrained.

4.2 Modeling Ada types

A general account of Larch/Ada's treatment of arbitrary Ada types and
objects closely follows the account just given of the integer types and objects.

4.2.1 Values

Every Ada type T is associated with a corresponding sort ST in the Larch/Ada
term language, the sort on which it is based, and is also associated with a
class of algebras AT. Objects of type T take their values in a subset-usually
a proper subset-of AT(ST), the carrier of sort ST in AT.
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We denote the signature of AT by ET. The operations of ET are available to
help describe the results of the basic operations on type T.

A type, its subtypes, and all its derived types are based on the same sort. In
general, any two types that are explicitly or implicitly convertible are based
on the same sort, and type conversion between them is the identity function.'

4.2.2 Larch/Ada terms

In this discussion of Larch/Ada terms we fix an Ada program P and once
again simplify things by ignoring scopes. Obtain the signature E by putting
together all the signatures ET for all the Ada types T occurring in P. The
Larch/Ada terms for P are obtained, essentially, by applying the usual rules
of first-order logic to construct terms and formulas from E and the following
collection of symbols, all of them treated as logical constants of appropriate
sorts:

e Simple program variables, constants, and formal parameters, and their
corresponding "in" versions. Those of type T have sort ST.

e x' defined and (in x) 'defined, of sort Bool, whenever x is a simple
variable of a discrete type.

* Virtual variables, with the sorts provided by their declarations.

Note: One may declare a virtual variable of any sort, and not only of
those sorts associated with type marks.

Every possible value of every Ada object in program P can be denoted by a
Larch/Ada term that contains only symbols from E.

'The exception to this is type conversion of array objects, since a conversion may
involve altering the bounds of an array's index types.
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States A state is a function assigning a value to every program variable
and virtual variable. Each of these terms is associated with a sort, and the
value associated with it must lie in the carrier of that sort.

When we speak of the virtual part of the state we mean the values associated
with the user-supplied virtual variables. The rest of the state is the actual
part. The effect of an Ada execution depends only on the actual part of the
state (and does not alter the virtual part at all).

Evaluation of terms The value of an arbitrary Larch/Ada term in a given
state is caiculated just as in the case of integer. The state supplies the values
of the variables, etc., and the algebras AT supply the meanings of all other
symbols occurring in Larch/Ada terms. As a result, every term has a value
in every state.

4.2.3 Objects

The apparatus of "in" variables and user-defined virtual variables is the same
for integer as it is for all other types.

4.2.4 Implementing Larch/Ada: theories of Ada types

The official meaning of Larch/Ada terms like x+y or Vz : Int(z+x = x-+z) is
the meaning they receive in the algebra Aint. One ordinarily reasons about
such terms from some axiomatic list of properties of Ait The report t5]
explicitly shows how to formulate, for each Ada type T, a "useful" axiomatic
theory ThT that is satisfied by the algebra AT. These axioms are implemented
in the Penelope system.

For every T, AT contains a representation of mathematical integers and all
their basic operations, and therefore no axiomatic description of AT captures
all its properties. The user should be aware that reasoning about Larch/Ada
can always legitimately assume any property of Larch/Ada terms that is
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true in AT, whether or not it is provable in first-order logic from the axioms
supplied in Penelope. This means, in particular, that any other theorem
prover that is sound for AT could be used in instead of, or in conjunction
with, the Penelope prover.

5 Mathematical Foundations of Larch/Ada

This section is a very brief introduction to some features of the mathematics
underlying Larch/Ada and Penelope: an outline, plus citations of papers
containing the details.

5.1 Foundations for Penelope

A formal specification for the Penelope system would be something like:
Declare a program verified if certain criteria are satisfied. A foundation for
Penelope is an argument purporting to show that this specification is correct,
in the sense that a program that satisfies those criteria really does behave as
advertised.

5.1.1 Ada and Ada'

Our first problem is that Ada lacks a formal definition. 2 Accordingly, we
formally define the semantics of a closely related language, Ada', having the
same syntax as Ada. This definition uses standard techniques of denotational
semantics. Though sequential, Ada' is non-deterministic (as is sequential
Ada).

The semantics of Ada' is more tractible than that of Ada. For example, Ada'
stipulates the methods of parameter passing even when Ada leaves them

2Neither the AdaEd interpreter nor the EEC-sponsored formal definition of Ada has
official standing.
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undetermined. We impose restrictions on program texts to help compensate
for this difference by disallowing programs that are sensitive to the choice of
parameter mechanism.

The argument that, in the end, we really have compensated for Ada"s sim-
plifications is necessarily informal. Experts will immediately wonder about
the complex interactions between Ada's underdetermined parameter-passing
mechanisms and exception-raising.

5.1.2 Program errors

Erroneous programs and incorrect order dependences deserve separate men-
tion. These program errors are of two kinds.

The errors belonging to one class are detectable by consulting current state
information. For example, any attempt to read an uninitialized variable is
an error of this kind. The Ada semantics of such an execution is totally
undefined, and therefore any Larch/Ada specification implicitly asserts that
such errors do not occur. The VC's generated by Penelope require the user
to prove that. We may view the Ada' semantics of these executions as the
raising of a predefined, unhandleable, catastrophic exception.

The errors belonging to the other class are defined in terms of the effect
of a program, where the notion of "effect" is left undefined. For example, a
procedure call whose "effect" is sensitive to the order in which its parameters
are evaluated is an error of this kind. The Ada semantics of such executions
is various-in some cases the result is undefined. Our solution is to regard
two different executions as having the same "effect" if they satisfy the same
specifications. In other words, something is an effect only if it affects whether
an execution meets the constraints of the specification. Given this definition,
Penelope verifies that no program errors of either class occur.
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5.2 Formalizing the semantics of Larch/Ada

The paper [6] provides, in a somewhat general setting, a formal definition of
satisfaction of a two-tiered specification. This section contains some general
remarks on the meaning of two-tiered specifications and their use in program
proofs.

5.2.1 The meaning of the mathematical component

Return to the example of factorial. Notice that the mathematical com-
ponent does not uniquely pin down the meaning of fact, since its value on
negative inputs is competely undetermined.

The meaning of the two-tiered specification, however, is unambiguous. It
says that the code must obey its interface specification no matter what in-
terpretation of fact is chosen (so long as it obeys the axioms). Intuitively,
this says that the meaning of the mathematical component is nothing but
the consequences of its axioms.

5.2.2 Specifications and proofs

The formal definition of satisfaction is purely semantic. It makes no reference
to provability, let alone to any particular proof system. Nonetheless, some
intuition can be gained by understanding certain proof obligations that are
sufficient to imply satisfaction.

For example, from what axioms does the proof of a VC take place? Sup-
pose that program P1 is implemented in terms of program P2 , and that the
mathematical component of the specification of each Pi is the theory Thi.
Essentially, the VC generated for P1 is a formula whose symbols may come
from either Th1 or Th2 ; and its proof takes place in the union of theories
Th, and Th2.
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Proving the VC for P1 in Th, U Th 2 is not quite sufficient to show that
P1 satisfies its specification: If Th, U Th2 is an inconsistent theory, such a
proof would be vacuous. Th, and Th2 must, therefore, be consistent with
one another. There exist other constraints, in addition to this consistency
requirement, on the way in which the mathematical components of specifi-
cations combine. These other constraints can be thought of as additional
VC's for ensuring that multiple programs verified from multiple collections
of traits are compatible.

5.2.3 Proof obligations

The use of a two-tiered specification assumes the consistency of its mathe-
matical component. Other, subtler, assumptions are made when two-tiered
specifications are combined-when, for example, the specifications to some
program units are used as hypotheses to the proof of another.

Here is an illustration of one such requirement. Suppose that we write a
program P in terms of some predefined type T. Plainly, the specification
of P cannot legitimately introduce new assumptions about the behavior of
basic operations on T. A proof of P from such unwarranted assumptions
would be fallacious. This can be rephrased as follows: Suppose that the
predefined operations of T are characterized by a two-tiered specification
whose mathematical component is given by theory Th. It is illegitimate for
the mathematical component of P to imply any formula from the language
of Th unless that formula is also a consequence of Th.

There is no universally applicable technique for discharging obligations of
this kind, and the current Penelope system does not generate these additional
VC's.
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6 Appendix: Simplifying Assumptions

Formal verification makes explicit what we mean by saying that a program
is correct, makes explicit the hypotheses on which our belief in its correct-
ness depends, and (presumably) strengthens that belief by eliminating or
simplifying hypotheses we would otherwise have to make.

This section lists the restrictions and assumptions that qualify any verifica-
tion, in Penelope, that an Ada program satisfies its Larch/Ada specification.

Penelope is applicable only to a subset of the legal Ada programs, those
satisfying the following restrictions:

" no use of real number types or operations, unchecked programming,
machine dependencies, tasking, or generics

" restrictions on subprogram calls to prevent improper aliasing of param-
eters against each other or against global variables

* restrictions on expressions to prevent improper use of side effect-

One class of assumptions is important, but quite generic: A verification con-
ducted on the source code assumes the correctness of the compiler's transla-
tion and of the all the levels (assembler, ... , hardware) beneath it. However
plausible or implausible it may be, this assumption is inescapable (and is also
made, implicitly, by the ordinary programmer). The user of Penelope also
assumes, of course, that his verification has not slipped through because of
some bug in Penelope's code.

Our non-generic assumptions are as follows. A Penelope verification of an
Ada program says nothing about an execution during which any of the fol-
lowing happens:

e Numeric or storage overflow occurs.
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* A compiler-introduced optimization has altered the effect of the execu-
tion (other than by altering its efficiency).

The output of a program can be altered as a result of legal optimizations
(See the example in [1], §11.6, paragraph 10.)

o The predefined exception program-error is raised in circumstances
where its raising is merely optional.

The first of these requirements is straightforward: our mathematical model
assumes infinite storage capacity. It means precisely what it says: An oc-
currence of storage-error, for example, invalidates a Penelope verification
even if that occurrence is handled and therefore not propagated.

The restriction on optimizations is rather serious, since it would be extremely
difficult to persuade oneself that a compiler satisfied it, unless that compiler
satisfied some very strong restriction, such as: execution of the statements
of the Ada program occurs in the canonical order.

7 Appendix: Models of Ada Types

The purpose of this section is to give the reader an intuitive picture of the
values we associate with each Ada type and of the meanings of the predefined

Larch/Ada operations on those values-that is, to describe AT for each type
T.

The various AT's have many parts in common--e.g., all contain the math-
ematical integers and booleans (and other things as well). It is therefore
inconvenient, and redundant, to describe all of AT for each type T. Instead,
we proceed by describing the values in ST, and explaining the meanings of
the Larch/Ada operations wherever it is most convenient to do so.
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7.1 Logic

All the usual logical operations, such as boolean connectives and quantifiers,
are available.

7.2 Discrete types

Let T be a discrete type. Our fundamental design decision is that the carrier
of ST is an infinite set which is isomorphic to the mathematical integers. In
particular, this decision requires us to distinguish the two-element boolean
sort Bool from the sort AdaBool, on which the discrete type boolean is
based. The reason for this decision will be explained after more of the model
is described.

7.2.1 Operations

The models of all discrete types have available the following Larch/Ada op-
erations:

< is a total ordering of ST isomorphic to the ordering of the mathematical
integers. The operations pos and val, which are made available in order to
describe T'POS and T'VAL, are isomorphisms between the order of ST and
the ordering of integers in nt. They are inverses of one another.

The pred and succ operations return the predecessor and successor, respec-
tively, in the infinite ordering <.

The operations image and value are used to describe the operations T' IMAGE
and T' VALUE, respectively.
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7.2.2 Explanations

Although it seems reasonable to base integer on Int, it seems odd to base
an enumeration type with two elements on an infinite set isomorphic "o the
integers. We do so because it is simpler. We provide one example of the
complications that arise if we attempt to base some or all of the discrete
types on sorts whose carriers are finite: the interaction between discrete
types and array types.

Example: Slides Many array operations (including array assignment) in-
volve sliding an array-rigidly translating it-along its indices. For example,
the following fragment is legal

declare
type I is (r,o,y,g,b,i,v);
type T is array(I range <>) of integer;

A : T(o..g);
B : T(b..v);

begin

A : B;
end;

As a result of this assignment, A(o) becomes equal to B(b), A(y) to B(i),
and A(g) to B(v). One way to say this is to say that A becomes equal to the
array "B slid 3 places downward." The definition of sliding is simple when
the index type is based on an ordered set that is infinite both directions, and
complicated when the index set is based on a finite ordering. Complications
arises when one attempts to slide an array "off the end" of a finite index set.
In this example, if the carrier of I contains only seven elements, one would
run off the end of the index set by trying to slide B 5 places downward.
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Conclusion There are many other cases in which it proves simpler to base
the discrete types on infinite orderings-and these simplifications do not seem
to be mere trade-offs displacing the complications elsewhere. The reason
is that the complications introduced by using finite carriers are typically
introduced for the sake of cases that never arise in practice. We never need
to compute the result of sliding an array off the end of its index type. One
way or another, a request to slide an array is always preceded by some kind
of test to see whether it "fits"-and if not, the slide isn't carried out.

The sole drawback is the need to distinbuish Boo] from AdaBool.

7.3 Enumeration types

After the declaration

type T is (red,bluegreen);

ET makes available names for the elements of T

(red -ST)

(blue: --+ST)

(green: --+ST)

and ThT guarantees that succ, pred, pos, etc. behave as expected on these
three elements:

succ(red) = blue

pred(green) = blue

pos(blue) = 1

etc.

The axioms of ThT also guarantee that the value and image operations behave
like T 'VALUE and T' IMAGE when the Ada functions return without raising
exceptions.
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7.4 Integer types

In addition to the operations possessed by all sort symbols for discrete types,
-t, includes the standard integer arithmetic operations with their usual

meanings. The values of computations like x/O, 2 * *(-3), mod(x, 0), and
rem(x, 0) are left unspecified.

7.5 Array types

For simplicity's sake we discuss only one-dimensional arrays (which are all
that Penelope currently supports).

Consider as our first example an array of discrete elements:

type I is range 1..20;
type T is array(I range <>) of integer;

A : T(5..10);

(A : -- ST) is a Larch/Ada term. A potential value for A-i.e., a valu- i the
carrier of ST-contains information of various kinds:

e It associates every value in the carrier of the index type with a value
in the component type. The value that A associates with i is denoted
by A[i]. A[7] is the value contained in the Ada object A(7), if it has a
value, and A[11] is an integer value of no observational significance.

* Its index bounds are constituents of its value.

* It associates every value in the carrier of the index type with a value
of sort Boo]. The boolean A@7 indicates whether the Ada object A(7)
has a value. (Booleans like A@1 1 are of no observational significance.)

We can think of the values of ST as being generated by the following two
operations:
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e The value of makearray(ij) is a completely uninitialized array whose
lower index bound is i and whose upper index bound is j. (It is not
required that i < j.) To say that it is totally uninitialized is to say
that for every integer k, makearray(ij)@k = false. Immediately after
its declaration, A has value makearray(1,5).

* The value of A[i ,= j] differs from that of A in at most two ways:
its i" component is initialized (whereas that of A may or may not be
initialized), and the value of its i" component is j.

The basic picture for arrays whose components are not discrete elements
differs only in that we effectively omit the "@" operation by leaving it totally
unspecified.

Our definition of the set of values in ST is insensitive to whether T is a
constrained or an unconstrained array type. This is consistent with previ-
ous design decisions, since every constrained array type is a subtype of an
unconstrained array type (which may be anonymous).
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